1,644 research outputs found

    Rebalancing Learning on Evolving Data Streams

    Full text link
    Nowadays, every device connected to the Internet generates an ever-growing stream of data (formally, unbounded). Machine Learning on unbounded data streams is a grand challenge due to its resource constraints. In fact, standard machine learning techniques are not able to deal with data whose statistics is subject to gradual or sudden changes without any warning. Massive Online Analysis (MOA) is the collective name, as well as a software library, for new learners that are able to manage data streams. In this paper, we present a research study on streaming rebalancing. Indeed, data streams can be imbalanced as static data, but there is not a method to rebalance them incrementally, one element at a time. For this reason we propose a new streaming approach able to rebalance data streams online. Our new methodology is evaluated against some synthetically generated datasets using prequential evaluation in order to demonstrate that it outperforms the existing approaches

    Heaven Test Stand: Towards Comparative Research on RSP Engines

    Get PDF

    Towards a Top-K SPARQL Query Benchmark Generator

    Get PDF
    The research on optimization of top-k SPARQL query would largely benefit from the establishment of a benchmark that allows comparing different approaches. For such a benchmark to be meaningful, at least two requirements should hold: 1) the benchmark should resemble reality as much as possible, and 2) it should stress the features of the topk SPARQL queries both from a syntactic and performance perspective. In this paper we propose Top-k DBPSB: an extension of the DBpedia SPARQL benchmark (DBPSB), a benchmark known to resemble reality, with the capabilities required to compare SPARQL engines on top-k queries.Web Information System

    A use case of Glue WSMO Discovery Engine

    Get PDF
    Abstract

    Streaming MASSIF : cascading reasoning for efficient processing of iot data streams

    Get PDF
    In the Internet of Things (IoT), multiple sensors and devices are generating heterogeneous streams of data. To perform meaningful analysis over multiple of these streams, stream processing needs to support expressive reasoning capabilities to infer implicit facts and temporal reasoning to capture temporal dependencies. However, current approaches cannot perform the required reasoning expressivity while detecting time dependencies over high frequency data streams. There is still a mismatch between the complexity of processing and the rate data is produced in volatile domains. Therefore, we introduce Streaming MASSIF, a Cascading Reasoning approach performing expressive reasoning and complex event processing over high velocity streams. Cascading Reasoning is a vision that solves the problem of expressive reasoning over high frequency streams by introducing a hierarchical approach consisting of multiple layers. Each layer minimizes the processed data and increases the complexity of the data processing. Cascading Reasoning is a vision that has not been fully realized. Streaming MASSIF is a layered approach allowing IoT service to subscribe to high-level and temporal dependent concepts in volatile data streams. We show that Streaming MASSIF is able to handle high velocity streams up to hundreds of events per second, in combination with expressive reasoning and complex event processing. Streaming MASSIF realizes the Cascading Reasoning vision and is able to combine high expressive reasoning with high throughput of processing. Furthermore, we formalize semantically how the different layers in our Cascading Reasoning Approach collaborate

    Continuous Queries and Real-time Analysis of Social Semantic Data with C-SPARQL

    Get PDF
    Abstract. Social semantic data are becoming a reality, but apparently their streaming nature has been ignored so far. Streams, being unbounded sequences of time-varying data elements, should not be treated as persistent data to be stored “forever ” and queried on demand, but rather as transient data to be consumed on the fly by queries which are registered once and for all and keep analyzing such streams, producing answers triggered by the streaming data and not by explicit invocation. In this paper, we propose an approach to continuous queries and realtime analysis of social semantic data with C-SPARQL, an extension of SPARQL for querying RDF streams

    Towards Knowledge in the Cloud

    Get PDF
    Knowledge in the form of semantic data is becoming more and more ubiquitous, and the need for scalable, dynamic systems to support collaborative work with such distributed, heterogeneous knowledge arises. We extend the “data in the cloud” approach that is emerging today to “knowledge in the cloud”, with support for handling semantic information, organizing and finding it efficiently and providing reasoning and quality support. Both the life sciences and emergency response fields are identified as strong potential beneficiaries of having ”knowledge in the cloud”

    Towards time-evolving analytics: Online learning for time-dependent evolving data streams

    Get PDF
    Traditional historical data analytics is at risk in a world where volatility, uncertainty, complexity, and ambiguity are the new normal. While Streaming Machine Learning (SML) and Time-series Analytics (TSA) attack some aspects of the problem, we still need a comprehensive solution. SML trains models using fewer data and in a continuous/adaptive way relaxing the assumption that data points are identically distributed. TSA considers temporal dependence among data points, but it assumes identical distribution. Every Data Scientist fights this battle with ad-hoc solutions. In this paper, we claim that, due to the temporal dependence on the data, the existing solutions do not represent robust solutions to efficiently and automatically keep models relevant even when changes occur, and real-time processing is a must. We propose a novel and solid scientific foundation for Time-Evolving Analytics from this perspective. Such a framework aims to develop the logical, methodological, and algorithmic foundations for fast, scalable, and resilient analytics
    • …
    corecore